Add like
Add dislike
Add to saved papers

Repeated quantitative measurements of De Novo synthesis of albumin and fibrinogen.

The possibility of using two different isotopomers, for the incorporation of isotopically labeled amino acids, was explored to enable longitudinal studies of de novo synthesis of two export liver proteins, albumin and fibrinogen. The agreement of the synthesis rates between the two different labels was evaluated along with the reproducibility of repeated experiments using different time intervals. Healthy volunteers were studied in a standardized fed state. Protocol A (n = 10) involved two measurements 48 hours apart. Protocol B (n = 6) involved three measurements at baseline and five hours and then seven days after the initial measurement. De novo synthesis of albumin and fibrinogen by the incorporation of D5-phenylalanine or D8-phenylalanine were measured using the flooding dose technique. Albumin and fibrinogen were isolated from plasma using standard techniques. Fractional and absolute synthesis rates were calculated. Repeated measurements employing the two isotoptomers showed good agreement for albumin fractional synthesis rate after 48 hours (p = 0.92) and after 7 days (p = 0.99), with a coefficient of variation of 5.9% when using the same isotopic label. For fibrinogen, the coefficient of variation for the fractional synthesis rate employing the same isotopic label was 16.6%. Repeated measurements after 48 hours and seven days showed less agreement although there was no statistical difference (P = 0.32 and P = 0.30 respectively). Repeated measurement after five hours showed a statistical significant difference for the fractional synthesis rate of fibrinogen (p = 0.008) but not for albumin (p = 0.12). Repeated measurements of albumin de novo synthesis more than 48 hours apart show acceptable agreement using either one or two different isotopic labels. For fibrinogen the larger intra-individual scatter necessitates larger study groups to detect changes in longitudinal studies. Repeated measurements within 48 hours need to be validated further.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app