Add like
Add dislike
Add to saved papers

Insight into a Fast-Phototuning Azobenzene Switch for Sustainably Tailoring the Foam Stability.

A photoresponsive surfactant of 4-octoxy-4'-[(trimethylamino)ethoxy]azobenzene (OTAEAzo) has been synthesized for developing a fast-phototuning foam switch based on its high sensitivity, reversibility, and fatigue resistance of the photoisomerization capability. Ultraviolet (UV)-light irradiation for 1 s enabled conversion from the trans isomer to the cis configuration, while exposure to visible (Vis)-light for 3 min induced a cis-to-trans transformation, which maintains an excellent cycling stability for 20 cycles of photoisomerization. The photoisomerization speed depended on the concentration of OTAEAzo, and a lower concentration facilitated a faster photoisomerization process. Because of the low critical micelle concentration (CMC), OTAEAzo with a small dosage of 0.2 g·L-1 showed foamability, which accelerated the photoisomerization speed, enabling it to become a highly efficient switch. The surface activities of trans-OTAEAzo presented distinct differences from those of cis-OTAEAzo, resulting in the foam stabilization effects of trans-OTAEAzo (t1/2 = 2.58 min) and the destabilization effects of cis-OTAEAzo (t1/2 = 0.38 min). Moreover, the foam properties varied slightly in the phototuning cycles. OTAEAzo with low CMC presents high sensitivity and reversible photoisomerization capability, providing an environmental and sustainable approach for tailoring the foam stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app