Add like
Add dislike
Add to saved papers

Synthesis and Antitumor Activity of New Group 3 Metallocene Complexes.

The quest for alternative drugs with respect to the well-known cis -platin and its derivatives, which are still used in more than 50% of the treatment regimens for patients suffering from cancer, is highly needed. In this context, organometallic compounds, which are defined as metal complexes containing at least one direct covalent metal-carbon bond, have recently been found to be promising anticancer drug candidates. A series of new metallocene complexes with scandium, yttrium, and neodymium have been prepared and characterized. Some of these compounds show a very interesting anti-proliferative activity in triple negative breast cancer cell line (MDA.MB231) and the non-hormone sensitive prostate cancer cell line (DU145). Moreover, the interaction of some of them with biological membranes, evaluated using liposomes as bio-membrane mimetic model systems, seems to be relevant. The biological activity of these compounds, particularly those based on yttrium, already effective at low concentrations on both cancer cell lines, should be taken into account with regard to new therapeutic approaches in anticancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app