Journal Article
Review
Add like
Add dislike
Add to saved papers

Inflammatory role of high salt level in tumor microenvironment (Review).

Chronic inflammation is known to play a critical role in cancer development and progression. High salt is known to mediate several chronic inflammatory diseases including hypertension, myocardial infarction, neurological ischemic attack, autoimmune diseases and cancers. High salt level is shown to induce angiogenesis and immune-dysfunction, both of which play a direct role in cancer proliferation. Furthermore, salt has been suggested to enhance Warburg-like metabolic phenotype in cancer cells and at the same time also induce pro-tumor MΦ2-macrophage phenotype. Recent studies have identified several molecular targets such as tonicity specific transcript factor NFAT5/TonEBP, sodium ion channel γENaC, and vascular endothelial growth factor, VEGF, which are upregulated under high salt external environment. These molecular targets offer futuristic therapeutic application in precision medicine. In this review, we discuss the current understanding of the salt mediated metabolic and immune dysfunctions playing a potential role in cancerous changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app