Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The nicotinic acetylcholine receptor α7 subunit is an essential negative regulator of bone mass.

Scientific Reports 2017 March 29
The nicotinic receptor α7nAchR reportedly regulates vagal nerve targets in brain and cardiac tissue. Here we show that nAchR7-/- mice exhibit increased bone mass due to decreased osteoclast formation, accompanied by elevated osteoprotegerin/RANKL ratios in serum. Vagotomy in wild-type mice also significantly increased the serum osteoprotegerin/RANKL ratio, and elevated bone mass seen in nAchR7-/- mice was reversed in α7nAchR/osteoprotegerin-doubly-deficient mice. α7nAchR loss significantly increased TNFα expression in Mac1-positive macrophages, and TNFα increased the osteoprotegerin/RANKL ratio in osteoblasts. Targeting TNFα in nAchR7-/- mice normalized both serum osteoprotegerin/RANKL ratios and bone mass. Administration of nicotine, an α7nAchR ligand, to wild-type mice increased serum RANKL levels. Thus, vagal nerve stimulation of macrophages via α7nAchR regulates bone mass by modulating osteoclast formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app