Add like
Add dislike
Add to saved papers

Upregulation of long noncoding RNA zinc finger antisense 1 enhances epithelial-mesenchymal transition in vitro and predicts poor prognosis in glioma.

Increasing evidence indicates that long noncoding RNAs play important roles in development and progression of various cancers. Zinc finger antisense 1 is a novel long noncoding RNA whose clinical significance, biological function, and underlying mechanism are still undetermined in glioma. In this study, we reported that zinc finger antisense 1 expression was markedly upregulated in glioma and tightly correlated with clinical stage. Moreover, patients with high zinc finger antisense 1 expression had shorter survival. Multivariate Cox regression analysis provided a clue that, probably, zinc finger antisense 1 level could serve as an independent prognostic factor for glioma. Functionally, zinc finger antisense 1 acted as an oncogene in glioma because its knockdown could promote apoptosis and significantly inhibit cell proliferation, migration, and invasion. Furthermore, zinc finger antisense 1 silencing could result in cell cycle arrest at the G0/G1 phase and correspondingly decrease the percentage of S phase cells in both U87 and U251 cell lines. Moreover, it was found that silenced zinc finger antisense 1 could impair migration and invasion by inhibiting the epithelial-mesenchymal transition through reducing the expression of MMP2, MMP9, N-cadherin, Integrin β1, ZEB1, Twist, and Snail as well as increasing E-cadherin level in glioma. Taken together, our data identified that zinc finger antisense 1 might act as a valuable prognostic biomarker and potential therapeutic target for glioma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app