Add like
Add dislike
Add to saved papers

Analysis of Thymocyte Migration, Cellular Interactions, and Activation by Multiphoton Fluorescence Microscopy of Live Thymic Slices.

Thymocytes migrate through discrete compartments within the thymus, engaging in cellular interactions essential for their differentiation into functional and self-tolerant T cells. Thus, understanding the temporal and spatial behavior of thymocytes within an intact thymic microenvironment is critical for elucidating processes governing T cell development. Towards this end, we describe methods for preparing thymic explant slices, in which the migration of thymocytes through three-dimensional space can be probed using time-lapse, multiphoton fluorescence microscopy. Thymocytes, enriched for developmental subsets of interest, are labeled with cytoplasmic fluorescent dyes, and seeded onto live thymic slices that express an endogenous, stromal cell-specific fluorescent reporter. In response to chemotactic cues produced by thymic stromal cells, the labeled thymocytes migrate withinthymic microenvironments and engage in cellular interactions that recapitulate a physiological system, whichcan be readily imaged. Here we describe specimen preparation that maintains the integrity of thymic structures. We also describe imaging protocols for acquiring multiple fluorochrome channels to enable detection of thymocyte:stromal cell interactions and quantification of relative intracellular calcium levels to monitor T cell receptor activation. Parameters for quantifying motility and interaction behaviors during data analysis are also briefly described. The thymic slice is a versatile tool for probing live cell behaviors and developing novel hypotheses not readily apparent by static experimental methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app