Add like
Add dislike
Add to saved papers

A Computational Approach to Study Gene Expression Networks.

We describe a simple computational approach that can be used for the study and simulation of regulatory networks. The advantage of this approach is that it requires neither computational background nor exact quantitative data about the biological system under study. Moreover, it is suitable for examining alternative hypotheses about the structure of a biological network. We used a tool called BioNSi (Biological Network Simulator) that is based on a simple computational model, which can be easily integrated as part of the lab routine, in parallel to experimental work. One benefit of this approach is that it enables the identification of regulatory proteins, which are missing from the experimental work. We describe the general methodology for modeling a network's dynamics in the tool, and then give a point by point example for a specific known network, entry into meiosis in budding yeast.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app