Add like
Add dislike
Add to saved papers

Decreased Glutamatergic Activity in the Frontal Cortex of Single Prolonged Stress Model: In vivo and Ex Vivo Proton MR Spectroscopy.

Single prolonged stress (SPS) is one of the preclinical models of posttraumatic stress disorder (PTSD) in humans. Not every traumatized person develops PTSD and the onset of the disease varies from months to many years after exposure to life-threatening events. The pathogenetic neurometabolites in PTSD have not been investigated to date, and could provide a means for therapeutic interventions. Therefore the present study aimed to evaluate neurochemical changes in the frontal cortex in the SPS model during time-dependent sensitization using in vivo and ex vivo proton magnetic spectroscopy (1 H-MRS). Twenty-one male Sprague-Dawley rats (200-220 g) were randomly assigned into two groups (Control, n = 10; SPS, n = 11). SPS consists of three consecutive stressors (restraint, forced swimming, and ether exposure) followed by 7 days without disturbance. In vivo 1 H-MRS scans were conducted at baseline, immediately after SPS, and 3 and 7 days after SPS to quantify time-dependent alterations in the frontal cortex. On day 7, all animals were sacrificed and ex vivo 1 H-MRS was performed. After SPS exposure, the SPS group showed signs of excitatory activities (glutamate) and cellular membrane turnover (choline and total choline) for 7 days. After the time-sensitization period, the SPS group showed lower glutamate and creatine levels and higher choline and lactate levels than the control group. These results indicate that SPS induces sustained adaptation of glutamatergic neuronal activity in the frontal cortex. Therefore, we conclude that SPS-induced stress reduces glutamatergic metabolism in the frontal cortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app