Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Examination of Enterococcus faecalis Toxin-Antitoxin System Toxin Fst Function Utilizing a Pheromone-Inducible Expression Vector with Tight Repression and Broad Dynamic Range.

Tools for regulated gene expression in Enterococcus faecalis are extremely limited. In this report, we describe the construction of an expression vector for E. faecalis , designated pCIE, utilizing the PQ pheromone-responsive promoter of plasmid pCF10. We demonstrate that this promoter is tightly repressed, responds to nanogram quantities of the peptide pheromone, and has a large dynamic range. To demonstrate its utility, the promoter was used to control expression of the toxic peptides of two par family toxin-antitoxin (TA) loci present in E. faecalis , par pAD1 of the pAD1 plasmid and par EF0409 located on the E. faecalis chromosome. The results demonstrated differences in the modes of regulation of toxin expression and in the effects of toxins of these two related systems. We anticipate that this vector will be useful for further investigation of par TA system function as well as the regulated expression of other genes in E. faecalis IMPORTANCE E. faecalis is an important nosocomial pathogen and a model organism for examination of the genetics and physiology of Gram-positive cocci. While numerous genetic tools have been generated for the manipulation of this organism, vectors for the regulated expression of cloned genes remain limited by high background expression and the use of inducers with undesirable effects on the cell. Here we demonstrate that the PQ pheromone-responsive promoter is repressed tightly enough to allow cloning of TA system toxins and evaluate their effects at very low induction levels. This tool will allow us to more fully examine TA system function in E. faecalis and to further elucidate its potential roles in cell physiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app