COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A comparison of the material properties of natural and synthetic vascular walls.

Characterization of the mechanical properties of native and synthetic vascular grafts is an essential task in the process of designing novel vascular constructs. The aim in this study was to compare the mechanical behavior of ovine left Subclavian artery with that of POSS-PCU (a commercial biomaterial which is currently under clinical investigation. ClinicalTrials.gov Identifier: NCT02301312). We used Delfino's strain energy potential within the framework of quasilinear viscoelasticity theory to capture the viscoelastic response of the considered materials. The material parameters of the quasilinear viscoelastic constitutive equation were determined through a combination of experimental and computational method. First, a uniaxial tensile testing device was used to perform a series of stress relaxation tests on ring samples. Then, the derived quasilinear viscoelastic models were implemented into finite element system. With the aid of mechanical experimentation and finite element simulation, the material parameters were obtained, modified and used for comparison of the mechanical properties of vascular walls. The results showed that the stiffness and the long term viscoelastic parameters of POSS-PCU may lead to different stress responses of the vascular walls. These two factors can be improved by modifications in manufacturing parameters of the synthetic vessel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app