Add like
Add dislike
Add to saved papers

On-site removal of antibiotics and antibiotic resistance genes from leachate by aged refuse bioreactor: Effects of microbial community and operational parameters.

Chemosphere 2017 July
The abuse of antibiotics has raised the prevalence of antibiotic resistance, which will pose potential risk to human health. Leachate, generated during the landfill treatment of municipal solid waste, is the important hotspot of the antibiotics and antibiotic resistance genes (ARGs), and no effective on-site treatment has been put forward for preventing ARGs dissemination. Herein, the aged refuse bioreactor was employed to remove antibiotics and ARGs from leachate, and the great removal performance was observed. For the detected antibiotics, the total removal efficiency was about 76.75%, and sulfanilamide and macrolide were removed with high efficiencies (>80%). Among the target ARGs, tetracycline and macrolide resistance genes (tetM, tetQ and ermB) were eliminated with 1.2-2.0 orders of magnitude. The occurrences of ARGs did not correlated with water quality parameters such as COD, total nitrogen, ammonia, nitrate and nitrite, but closely linked to the variations of the bacterial community structure. Redundancy analysis (RDA) indicated the significant correlations between four genera and the distribution of ARGs, which implied that these key genera (including potential pathogens) drove the ARGs removal. Furthermore, the hydraulic loading test confirmed that the aged refuse bioreactor was capable of achieving high removal efficiencies even under shock loading for the higher loading was negative for the proliferations of potential ARGs hosts. This study suggested that aged refuse bioreactor could be a promising way for antibiotics and ARGs on-site removal from leachate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app