JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MicroRNA-328 is involved in wound repair process in human bronchial epithelial cells.

Our aim was to investigate the role of microRNA on epithelial wound repair by global microRNA silencing. We have also analysed the influence of five miRNAs (miR-328, miR-342, miR-411, miR-609, miR-888, previously identified) on wound repair in 16HBE14o-bronchial epithelial cell line. Cells were transfected with siRNAs against human DROSHA and DICER1 or miRNA mimics or inhibitors. Wounding assays were performed and the cells were observed using time-lapse microscopy. The area of damage was calculated at chosen time points, followed by data analysis. Cells with silenced global miRNA expression showed a significantly slower repair rate compared to the control cells (p=0.001). For miR-328, we observed significantly delayed repair in cells transfected with the inhibitor compared to control (p=0.02). Global microRNA silencing significantly decreased the repair rate of airway epithelial cells in vitro, indicating an important role of miRNA in the regulation of wound repair and that miR-328, possibly involved in actin pathway, may be a potent modifier of this process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app