Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Platelet activation of mechanical versus bioprosthetic heart valves during systole.

Thrombus formation is a major concern for recipients of mechanical heart valves (MHVs), which requires them to take anticoagulant drugs for the rest of their lives. Bioprosthetic heart valves (BHVs) do not require life-long anticoagulant therapy but deteriorate after 10-15years. The thrombus formation is initiated by the platelet activation which is thought to be mainly generated in MHVs by the flow through the hinge and the leakage flow during the diastole. However, our results show that the activation in the bulk flow during the systole phase might play an essential role as well. This is based on our results obtained by comparing the thrombogenic performance of a MHV and a BHV (as control) in terms of shear induced platelet activation under exactly the same conditions. Three different mathematical activation models including linear level of activation, damage accumulation, and Soares model are tested to quantify the platelet activation during systole using the previous simulations of the flow through MHV and BHV in a straight aorta under the same physiologic flow conditions. Results indicate that the platelet activation in the MHV at the beginning of the systole phase is slightly less than the BHV. However, at the end of the systole phase the platelet activation by the bulk flow for the MHV is several folds (1.41, 5.12, and 2.81 for linear level of activation, damage accumulation, and Soares model, respectively) higher than the BHV for all tested platelet activation models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app