Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structure-Activity Relationships on Cinnamoyl Derivatives as Inhibitors of p300 Histone Acetyltransferase.

ChemMedChem 2017 August 23
Human p300 is a polyhedric transcriptional coactivator that plays a crucial role in acetylating histones on specific lysine residues. A great deal of evidence shows that p300 is involved in several diseases, including leukemia, tumors, and viral infection. Its involvement in pleiotropic biological roles and connections to diseases provide the rationale to determine how its modulation could represent an amenable drug target. Several p300 inhibitors (i.e., histone acetyltransferase inhibitors, HATis) have been described so far, but they all suffer from low potency, lack of specificity, or low cell permeability, which thus highlights the need to find more effective inhibitors. Our cinnamoyl derivative, 2,6-bis(3-bromo-4-hydroxybenzylidene)cyclohexanone (RC56), was identified as an active and selective p300 inhibitor and was proven to be a good hit candidate to investigate the structure-activity relationship toward p300. Herein, we describe the design, synthesis, and biological evaluation of new HATis structurally related to our hit; moreover, we investigate the interactions between p300 and the best-emerged hits by means of induced-fit docking and molecular-dynamics simulations, which provided insight into the peculiar chemical features that influence their activity toward the targeted enzyme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app