Add like
Add dislike
Add to saved papers

Is the Ergogenicity of Caffeine Affected by Increasing Age? The Direct Effect of a Physiological Concentration of Caffeine on the Power Output of Maximally Stimulated EDL and Diaphragm Muscle Isolated from the Mouse.

INTRODUCTION: Caffeine is a well-established performance enhancing nutritional supplement in a young healthy population, however far less is known about how its ergogenicity is affected by increasing age. A recent review has highlighted the value of studies examining the direct effect of caffeine on isolated skeletal muscle contractility, but the present work is the first to assess the direct effect of 70µM caffeine (physiological maximum) on the maximal power output of isolated mammalian muscle from an age range representing developmental to early ageing.

METHOD: Female CD1 mice were aged to 3, 10, 30 and 50 weeks (n = 20 in each case) and either whole EDL or a section of the diaphragm was isolated and maximal power output determined using the work loop technique. Once contractile performance was maximised, each muscle preparation was treated with 70µM caffeine and its contractile performance was measured for a further 60 minutes.

RESULTS: In both mouse EDL and diaphragm 70µM caffeine treatment resulted in a significant increase in maximal muscle power output that was greatest at 10 or 30 weeks (up to 5% and 6% improvement respectively). This potentiation of maximal muscle power output was significantly lower at the early ageing time point, 50 weeks (up to 3% and 2% improvement respectively), and in mice in the developmental stage, at 3 weeks of age (up to 1% and 2% improvement respectively).

CONCLUSION: Uniquely, the present findings indicate a reduced age specific sensitivity to the performance enhancing effect of caffeine in developmental and aged mice which is likely to be attributed to age related muscle growth and degradation, respectively. Importantly, the findings indicate that caffeine may still provide a substantial ergogenic aid in older populations which could prove important for improving functional capacity in tasks of daily living.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app