Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Endothelial cell-specific activation of transforming growth factor-β signaling in mice induces cutaneous, visceral, and microvascular fibrosis.

In this study, we tested the hypothesis that constitutive endothelial cell-specific activation of TGF-β signaling induces tissue fibrosis and vasculopathy resembling the characteristic fibrotic and vascular alterations of systemic sclerosis. Transgenic mice with inducible expression of a constitutively active TGF-β receptor I specifically in endothelial cells were generated by intercrossing mice harboring a constitutively active TGF-β receptor I with a mouse strain containing the endothelial cell-specific Cdh5 gene promoter directing the tamoxifen-inducible expression of the Cre-ERT2 cassette. Administration of tamoxifen to these mice would result in constitutive TGF-β activation and signaling confined to endothelial lineage cells. The effects of constitutive TGF-β endothelial cell activation were assessed by histopathological examination of skin and various internal organs, tissue hydroxyproline analysis, and assessment of expression of myofibroblast differentiation and TGF-β signaling genes employing real-time PCR and immunohistochemical staining of lung vessels for endothelial- and myofibroblast-specific proteins. Constitutive TGFβ-1 signaling in endothelial cells resulted in cutaneous and visceral fibrosis with prominent fibrotic involvement of the lungs and severe perivascular and subendothelial fibrosis of small arterioles. A marked increase in the expression of fibrosis-associated genes and of genes indicative of myofibroblast activation was also found. Confocal microscopy of lung vessels showed evidence consistent with the induction of endothelial-to-mesenchymal transition (EndoMT). Taken together, our data indicate that transgenic mice with constitutive endothelial cell-specific activation of TGF-β signaling display severe cutaneous, pulmonary, and microvascular fibrosis resembling the fibrotic and microvascular alterations characteristic of systemic sclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app