Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity.

Enzyme-mimicking nanomaterials (nanozymes) are more cost-effective and robust than protein enzymes, but they lack specificity. Herein, molecularly imprinted polymers were grown on Fe3 O4 nanozymes with peroxidase-like activity to create substrate binding pockets. Electron microscopy confirmed a shell of nanogel. By imprinting with an adsorbed substrate, moderate specificity was achieved with neutral monomers. Further introducing charged monomers led to nearly 100-fold specificity for the imprinted substrate over the nonimprinted compared to that of bare Fe3 O4 . Selective substrate binding was further confirmed by isothermal titration calorimetry. The same method was also successfully applied for imprinting on gold nanoparticles (peroxidase mimics) and nanoceria (oxidase mimics). Molecular imprinting furthers the functional enzyme mimicking aspect of nanozymes, and such hybrid materials will find applications in biosensor development, separation, environmental remediation, and drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app