Add like
Add dislike
Add to saved papers

Mutation Analysis of Isocitrate Dehydrogenase (IDH1/2) and DNA Methyltransferase 3A (DNMT3A) in Thai Patients with Newly Diagnosed Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a clonal hematopoietic stem/progenitor cell disorder which features several genetic mutations. Recurrent genetic alterations identified in AML are recognized as causes of the disease, finding application as diagnostic, prognostic and monitoring markers, with potential use as targets for cancer therapy. Here, we performed a pyrosequencing technique to investigate common mutations of IDH1, IDH2 and DNMT3A in 81 newly diagnosed AML patients. The prevalences of IDH1, IDH2 and DNMT3A mutations were 6.2%, 18.5%, and 7.4%, respectively. In addition, exclusive mutations in IDH1 codon 132 (R132H, R132C, R132G and R132S) were identified in all IDH1-mutated cases indicating that these are strongly associated with AML. Interestingly, higher median blast cell counts were significantly associated with IDH1/2 and DNMT3A mutations. In summary, we could establish a routine robust pyrosequencing method to detect common mutations in IDH1/2 and DNMT3A and demonstrate the frequency of those mutations in adult Thai AML patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app