Add like
Add dislike
Add to saved papers

An accurate and fast alignment-free method for profiling microbial communities.

Determining abundances of microbial genomes in metagenomic samples is an important problem in analyzing metagenomic data. Although homology-based methods are popular, they have shown to be computationally expensive due to the alignment of tens of millions of reads from metagenomic samples to reference genomes of hundreds to thousands of environmental microbial species. We introduce an efficient alignment-free approach to estimate abundances of microbial genomes in metagenomic samples. The approach is based on solving linear and quadratic programs, which are represented by genome-specific markers (GSM). We compared our method against popular alignment-free and homology-based methods. Without contamination, our method was more accurate than other alignment-free methods while being much faster than a homology-based method. In more realistic settings where samples were contaminated with human DNA, our method was the most accurate method in predicting abundance at varying levels of contamination. We achieve higher accuracy than both alignment-free and homology-based methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app