Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High-sucrose-induced maternal obesity disrupts ovarian function and decreases fertility in Drosophila melanogaster.

As the obesity epidemic worsens, the prevalence of maternal obesity is expected to rise. Both high-fat and high-sucrose diets are known to promote maternal obesity and several studies have elucidated the molecular influence of high-fat feeding on female reproduction. However, to date, the molecular impact of a high-sucrose diet on maternal obesity remains to be investigated. Using our previously reported Drosophila high-sucrose maternal obesity model, we sought to determine how excess dietary sucrose impacted the ovary. High-sucrose diet (HSD) fed adult females developed systemic insulin resistance and exhibited an ovarian phenotype characterized by excess accumulation of lipids and cholesterol in the ovary, decreased ovary size, and impaired egg maturation. We also observed decreased expression of antioxidant genes and increased protein carbonylation in the ovaries of HSD females. HSD females laid fewer eggs; however, the overall survival of offspring was unchanged relative to lean control females. Ovaries of HSD females had increased mitochondrial DNA copy number and decreased expression of key mitochondrial regulators, suggestive of an ineffective compensatory response to mitochondrial dysfunction. Mitochondrial alterations were also observed in male offspring of obese females. This study demonstrates that high-sucrose-induced maternal obesity promotes insulin resistance, while disrupting ovarian metabolism and function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app