Add like
Add dislike
Add to saved papers

B cells expressing the IgA receptor FcRL4 participate in the autoimmune response in patients with rheumatoid arthritis.

The clinical efficacy of B cell targeting therapies highlights the pathogenic potential of B cells in inflammatory diseases. Expression of Fc Receptor like 4 (FcRL4) identifies a memory B cell subset, which is enriched in the joints of patients with rheumatoid arthritis (RA) and in mucosa-associated lymphoid tissue. The high level of RANKL production by this B cell subset indicates a unique pathogenic role. In addition, recent work has identified a role for FcRL4 as an IgA receptor, suggesting a potential function in mucosal immunity. Here, the contribution of FcRL4+ B cells to the specific autoimmune response in the joints of patients with RA was investigated. Single FcRL4+ and FcRL4- B cells were sorted from synovial fluid and tissue from RA patients and their immunoglobulin genes characterized. Levels of hypermutation in the variable regions in both populations were largely consistent with memory B cells selected by an antigen- and T cell-dependent process. Recombinant antibodies were generated based on the IgH and IgL variable region sequences and investigated for antigen specificity. A significantly larger proportion of the recombinant antibodies generated from individual synovial FcRL4+ B cells showed reactivity towards citrullinated autoantigens. Furthermore, both in analyses based on heavy chain sequences and flow cytometric detection, FcRL4+ B cells have significantly increased usage of the IgA isotype. Their low level of expression of immunoglobulin and plasma cell differentiation genes does not suggest current antibody secretion. We conclude that these activated B cells are a component of the local autoimmune response, and through their RANKL expression, can contribute to joint destruction. Furthermore, their expression of FcRL4 and their enrichment in the IgA isotype points towards a potential role for these cells in the link between mucosal and joint inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app