Add like
Add dislike
Add to saved papers

Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy.

Zinc contamination in near- and sub-surface environments is a serious threat to many ecosystems and to public health. Sufficient understanding of Zn speciation and transport mechanisms is therefore critical to evaluating its risk to the environment and to developing remediation strategies. The geochemical and mineralogical characteristics of contaminated soils in the vicinity of a Zn ore transportation route were thoroughly investigated using a variety of analytical techniques (sequential extraction, XRF, XRD, SEM, and XAFS). Imported Zn-concentrate (ZnS) was deposited in a receiving facility and dispersed over time to the surrounding roadside areas and rice-paddy soils. Subsequent physical and chemical weathering resulted in dispersal into the subsurface. The species identified in the contaminated areas included Zn-sulfide, Zn-carbonate, other O-coordinated Zn-minerals, and Zn species bound to Fe/Mn oxides or clays, as confirmed by XAFS spectroscopy and sequential extraction. The observed transformation from S-coordinated Zn to O-coordinated Zn associated with minerals suggests that this contaminant can change into more soluble and labile forms as a result of weathering. For the purpose of developing a soil washing remediation process, the contaminated samples were extracted with dilute acids. The extraction efficiency increased with the increase of O-coordinated Zn relative to S-coordinated Zn in the sediment. This study demonstrates that improved understanding of Zn speciation in contaminated soils is essential for well-informed decision making regarding metal mobility and toxicity, as well as for choosing an appropriate remediation strategy using soil washing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app