Add like
Add dislike
Add to saved papers

A distributed model predictive control based load frequency control scheme for multi-area interconnected power system using discrete-time Laguerre functions.

This paper proposes a distributed model predictive control based load frequency control (MPC-LFC) scheme to improve control performances in the frequency regulation of power system. In order to reduce the computational burden in the rolling optimization with a sufficiently large prediction horizon, the orthonormal Laguerre functions are utilized to approximate the predicted control trajectory. The closed-loop stability of the proposed MPC scheme is achieved by adding a terminal equality constraint to the online quadratic optimization and taking the cost function as the Lyapunov function. Furthermore, the treatments of some typical constraints in load frequency control have been studied based on the specific Laguerre-based formulations. Simulations have been conducted in two different interconnected power systems to validate the effectiveness of the proposed distributed MPC-LFC as well as its superiority over the comparative methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app