Add like
Add dislike
Add to saved papers

Modular organization of muscle activity patterns in the leading and trailing limbs during obstacle clearance in healthy adults.

Human locomotor patterns require precise adjustments to successfully navigate complex environments. Studies suggest that the central nervous system may control such adjustments through supraspinal signals modifying a basic locomotor pattern at the spinal level. To explore this proposed control mechanism in the leading and trailing limbs during obstructed walking, healthy young adults stepped over obstacles measuring 0.1 and 0.2 m in height. Unobstructed walking with no obstacle present was also performed as a baseline. Full body three-dimensional kinematic data were recorded and electromyography (EMG) was collected from 14 lower limb muscles on each side of the body. EMG data were analyzed using two techniques: by mapping the EMG data to the approximate location of the motor neuron pools on the lumbosacral enlargement of the spinal cord and by applying a nonnegative matrix factorization algorithm to unilateral and bilateral muscle activations separately. Results showed that obstacle clearance may be achieved not only with the addition of a new activation pattern in the leading limb, but with a temporal shift of a pattern present during unobstructed walking in both the leading and trailing limbs. An investigation of the inter-limb coordination of these patterns suggested a strong bilateral linkage between lower limbs. These results highlight the modular organization of muscle activation in the leading and trailing limbs, as well as provide a mechanism of control when implementing a locomotor adjustment when stepping over an obstacle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app