Add like
Add dislike
Add to saved papers

Effective chemotherapy of heterogeneous and drug-resistant early colon cancers by intermittent dose schedules: a computer simulation study.

PURPOSE: The effectiveness of cancer chemotherapy is limited by intra-tumor heterogeneity, the emergence of spontaneous and induced drug-resistant mutant subclones, and the maximum dose to which normal tissues can be exposed without adverse side effects. The goal of this project was to determine if intermittent schedules of the maximum dose that allows colon crypt maintenance could overcome these limitations, specifically by eliminating mixtures of drug-resistant mutants from heterogeneous early colon adenomas while maintaining colon crypt function.

METHODS: A computer model of cell dynamics in human colon crypts was calibrated with measurements of human biopsy specimens. The model allowed simulation of continuous and intermittent dose schedules of a cytotoxic chemotherapeutic drug, as well as the drug's effect on the elimination of mutant cells and the maintenance of crypt function.

RESULTS: Colon crypts can tolerate a tenfold greater intermittent dose than constant dose. This allows elimination of a mixture of relatively drug-sensitive and drug-resistant mutant subclones from heterogeneous colon crypts. Mutants can be eliminated whether they arise spontaneously or are induced by the cytotoxic drug.

CONCLUSIONS: An intermittent dose, at the maximum that allows colon crypt maintenance, can be effective in eliminating a heterogeneous mixture of mutant subclones before they fill the crypt and form an adenoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app