Controlled Clinical Trial
Journal Article
Add like
Add dislike
Add to saved papers

Effects of tiletamine on the adenosine monophosphate-activated protein kinase signaling pathway in the rat central nervous system.

OBJECTIVE: The dissociative anesthetic tiletamine, which acts on the central nervous system (CNS), is widely used in veterinary medicine and animal experiments. Recent studies indicate that adenosine 5'-monophosphate activated protein kinase (AMPK) plays a key role in the analgesic action of tiletamine. In the present study, the effects of tiletamine on the AMPK signaling pathway in rats were investigated.

METHODS: Sprague-Dawley rats were injected intraperitoneally with tiletamine and executed at 10, 20, 40 and 60min post injection. The cerebral cortex, hippocampus, thalamus, cerebellum and brainstem were immediately taken out to evaluate the mRNA and protein phosphorylation levels of liver kinase B1 (LKB1), AMPKα and eIF4E-binding protein 1 (4EBP1) using quantitative real-time polymerase chain reaction and western blot analysis.

RESULTS: Tiletamine increased AMPK mRNA expression in the rat brain (P<0.01). Increased mRNA expression of AMPK was accompanied by an increase in phosphorylation of LKB1, resulting in significant decreases in the phosphorylation levels of 4EBP1 in the corresponding brain regions (P<0.01).

CONCLUSION: In summary, the findings indicate that tiletamine regulates the mRNA expression and protein phosphorylation levels of LKB1, AMPK and 4EBP1 in the CNS, suggesting that the analgesic effect of the anesthetic is mediated, at least in part, by the AMPK signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app