Add like
Add dislike
Add to saved papers

Nanoemulgel using a bicephalous heterolipid as a novel approach to enhance transdermal permeation of tenofovir.

Improvements in permeation enhancement strategies, such as nanoemulsions (NEs) and nanoemulgels (NEGs), have led to a renewed interest in transdermal drug delivery (TDD). This study aimed to investigate the potential of LLA1E, a novel dendritic permeation enhancer, as an oily phase in the development of a NEG for the TDD of tenofovir (TNF). TNF loaded NEs (TNEs) were prepared and analysed for mean globule diameter (MGD), polydispersity index (PDI), zeta potential (ZP) and morphology. NEGs of the TNEs (TNEGs) were prepared and evaluated for ex vivo transdermal permeation efficacy. The skin integrity before and after the experiments was assessed using histology and transepithelial electrical resistance (TEER). TNEs had a MGD of 129.06±3.35nm, a PDI of 0.192±0.038 and a ZP of 20.9±2.02mV, with an incorporation efficiency of 91.94±0.84%. There was no significant change is these properties after incorporating the TNEs into the hydrogel, as MGD, PDI and ZP of TNEGs were found to be 136.13±5.21nm, 0.182±0.020 and -20.9±2.08mV respectively. Ex vivo permeation studies showed that the TNEG significantly enhanced the TNF permeation by 39.65-fold, with a cumulative amount of 1866.54±108.62μgcm-2 . Histological and TEER assessments showed no permanent effects on the skin by TNEG, indicating that this novel TNEG nanosystem has the potential to translate into clinical trials as treatment alternatives for HIV/AIDs patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app