Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Evidence for similar patterns of neural activity elicited by picture- and word-based representations of natural scenes.

NeuroImage 2017 July 16
A long-standing core question in cognitive science is whether different modalities and representation types (pictures, words, sounds, etc.) access a common store of semantic information. Although different input types have been shown to activate a shared network of brain regions, this does not necessitate that there is a common representation, as the neurons in these regions could still differentially process the different modalities. However, multi-voxel pattern analysis can be used to assess whether, e.g., pictures and words evoke a similar pattern of activity, such that the patterns that separate categories in one modality transfer to the other. Prior work using this method has found support for a common code, but has two limitations: they have either only examined disparate categories (e.g. animals vs. tools) that are known to activate different brain regions, raising the possibility that the pattern separation and inferred similarity reflects only large scale differences between the categories or they have been limited to individual object representations. By using natural scene categories, we not only extend the current literature on cross-modal representations beyond objects, but also, because natural scene categories activate a common set of brain regions, we identify a more fine-grained (i.e. higher spatial resolution) common representation. Specifically, we studied picture- and word-based representations of natural scene stimuli from four different categories: beaches, cities, highways, and mountains. Participants passively viewed blocks of either phrases (e.g. "sandy beach") describing scenes or photographs from those same scene categories. To determine whether the phrases and pictures evoke a common code, we asked whether a classifier trained on one stimulus type (e.g. phrase stimuli) would transfer (i.e. cross-decode) to the other stimulus type (e.g. picture stimuli). The analysis revealed cross-decoding in the occipitotemporal, posterior parietal and frontal cortices. This similarity of neural activity patterns across the two input types, for categories that co-activate local brain regions, provides strong evidence of a common semantic code for pictures and words in the brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app