Add like
Add dislike
Add to saved papers

Guggulsterone sensitized drug-resistant human hepatocarcinoma cells to doxorubicin through a Cox-2/P-gp dependent pathway.

Previous researches indicated that cyclooxygenase-2 (Cox-2) might be involved in P-glycoprotein (P-gp)-mediated multidrug resistance in hepatocellular carcinoma cells. Doxorubicin-resistant hepatocellular carcinoma PLC/PRF/5 cells (PLC/PRF/5R) and HepG2 (HepG2R) cells were developed in the present study. The modulatory effect of guggulsterone on Cox-2 and P-gp in PLC/PRF/5R and HepG2R cells was investigated. Cells proliferation, Cox-2 and P-gp expression, and prostaglandin E2 release were examined using MTT, flow cytometry, western blot and ELISA assays. Small interfering RNA (siRNA) targeted against Cox-2 and multidrug resistance protein (Mdr-1) was used to regulate the expression of Cox-2 and P-gp. The results showed that co-administration of guggulsterone resulted in a significant increase in chemo-sensitivity of PLC/PRF/5R cells to doxorubicin, as compared with doxorubicin treatment alone. When doxorubicin (10µM) was combined with guggulsterone (50µM), the mean apoptotic population of PLC/PRF/5R cells was 20.16%. It was increased by 1.5 times, as compared with doxorubicin (10µM) treatment alone. Furthermore, guggulsterone had significantly inhibitory effect on the levels of Cox-2, P-gp and prostaglandin E2 . However, guggulsterone did not show significantly inhibitory effect on the expression of prostaglandin E receptors. In addition, Cox-2 siRNA simultaneously reduced the expression of Cox-2 and P-gp in PLC/PRF/5R cells. Mdr-1 siRNA had no influence on Cox-2, but inhibited P-gp expression. The present study suggested that guggulsterone might enhance the cytotoxic effect of doxorubicin to PLC/PRF/5R cells through a Cox-2/P-gp dependent pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app