Journal Article
Review
Add like
Add dislike
Add to saved papers

Serotonin and neuroplasticity - Links between molecular, functional and structural pathophysiology in depression.

Serotonin modulates neuroplasticity, especially during early life, and dysfunctions in both systems likewise contribute to pathophysiology of depression. Recent findings demonstrate that serotonin reuptake inhibitors trigger reactivation of juvenile-like neuroplasticity. How these findings translate to clinical antidepressant treatment in major depressive disorder remains unclear. With this review, we link preclinical with clinical work on serotonin and neuroplasticity to bring two pathophysiologic models in clinical depression closer together. Dysfunctional developmental plasticity impacts on later-life cognitive and emotional functions, changes of synaptic serotonin levels and receptor levels are coupled with altered synaptic plasticity and neurogenesis. Structural magnetic resonance imaging in patients reveals disease-state-specific reductions of gray matter, a marker of neuroplasticity, and reversibility upon selective serotonin reuptake inhibitor treatment. Translational evidence from magnetic resonance imaging in animals support that reduced densities and sizes of neurons and reduced hippocampal volumes in depressive patients could be attributable to changes of serotonergic neuroplasticity. Since ketamine, physical exercise or learning enhance neuroplasticity, combinatory paradigms with selective serotonin reuptake inhibitors could enhance clinical treatment of depression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app