JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Visualization of weak interactions between quantum dot and graphene in hybrid materials.

Scientific Reports 2017 March 25
The mechanisms of the weak interactions within hybrid materials such as quantum dot (QD) and graphene (GR) have important implications for the design of related optoelectronic devices. We characterize the weak interactions in hybrid QD-GR systems using a non-covalent interactions approach. For a single Cd13 Se13 QD with a core-cage structure, the intensity of the steric repulsive strain in every Cd-Se spatial four-atom ring of the cage surface is stronger than that of the inter-core-cage structure. Van der Waals (vdW) interactions occur within the cavity of the cage and within the six-atom rings of the cage surface. The spatial repulsion strain and attractive interactions play a key role in stabilizing the structure of the monolayer graphene. Interestingly, the spatial six-atom ring of the single QD change into spatial four-atom rings of the QD in the hybrid system, accompanied by the translation of vdW interactions into steric repulsive interactions. We conclude that the vdW interactions with π extensions and the weak attractive interactions within local areas between the QD and graphene together stabilize the integral structure of the hybrid QD-GR system. These results explain of the formation mechanism and the stabilization of the components in QD-GR hybrid materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app