Add like
Add dislike
Add to saved papers

As a Nucleus Enters a Small Pore, Chromatin Stretches and Maintains Integrity, Even with DNA Breaks.

Biophysical Journal 2017 Februrary 8
As a cell pushes or pulls its nucleus through a small constriction, the chromatin must distort and somehow maintain genomic stability despite ever-present double-strand breaks in the DNA. Here we visualize within a living cell the pore-size dependent deformation of a specific locus engineered into chromosome-1 and cleaved. An mCherry-tagged nuclease targets the submicron locus, causing DNA cleavage and recruiting repair factors such as GFP-53BP1 to a large region around the locus. Aspiration of a cell and its nucleus into a micropipette shows that chromatin aligns and stretches parallel to the pore. Extension is largest in small pores, increasing >10-fold but remaining 30-fold shorter than the DNA contour length in the locus. Brochard and de Gennes' blob model for tube geometry fits the data, with a simple modification for chromatin crowding. Continuity of the highly extended, cleaved chromatin is also maintained, consistent with folding and cross bridging of the DNA. Surprisingly, extensional integrity is unaffected by an inhibitor of the DNA repair scaffold.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app