JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activation of EphA1-Epha receptor axis attenuates diabetic nephropathy in mice.

The Eph family of receptor tyrosine kinases serves as key modulators of various cellular functions, including inflammation, hypertrophy and fibrosis. Recent analyses have revealed that a member of the Eph family, EphA1, plays a pivotal role in regulating insulin metabolism and kidney injury. However, the importance of EphA1 in diabetic nephropathy has not been recognized. We established a diabetic nephropathy mouse model using a high-fat diet and streptozotocin (STZ) injection. Then, the recombinant adeno-associated virus type 9 (AAV9) overexpressing EphA1 or a negative control was injected locally into the kidney. Metabolite testing and histopathological analyses of kidney fibrosis, pancreatic islet function and signaling pathways were evaluated. Our study showed that hyperglycemia, insulin resistance, and renal fibrosis accompanied the deterioration of kidney function in diabetic mice. The overexpression of EphA1 in the kidney attenuated renal fibrosis and improved kidney function but did not affect systemic glucose metabolism and pancreatic islet function. Furthermore, the overexpression of EphA1 decreased the phosphorylation of ERK1/2, JNK and MYPT1 (a substrate of Rho kinase). The overexpression of EphA1 can be therapeutically targeted to inhibit diabetic renal fibrosis, which suggests that the EphA1-Epha receptor axis may be a novel therapy target for diabetic nephropathy. Mechanistically, the overexpression of EphA1 could inhibit MAPK and the Rho pathway in diabetic kidneys.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app