Add like
Add dislike
Add to saved papers

Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon.

Talanta 2017 May 16
Benefit from the advantages in costless, simplicity and efficiency, solvent exfoliation has been widely used in preparation of two-dimensional nanosheets with enhanced performances in electronics, photonics, and catalysis. In this work, solvent exfoliation was first applied to prepare exfoliated porous carbon (EPC) from an isoreticular metal-organic framework-8 (IRMOF-8) derived porous carbon (DPC). The obtained EPC with high surface area (1854m2 g-1 ) and improved dispersibility was used as electrode modifier for glassy carbon electrode (GCE) in square wave voltammetry (SWV) detection of chloramphenicol (CAP). The sensitivity of EPC modified GCE (EPC/GCE) was greatly improved in compare with that of the DPC modification. The corresponding linear ranges are 1×10-8 -1×10-6 molL-1 and 1×10-6 -4×10-6 molL-1 . The detection limit was calculated to be 2.9×10-9 molL-1 (at a signal-to-noise ratio of 3, S/N=3). In addition, the proposed sensor was successfully applied in the analysis of CAP in honey and achieved satisfying recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app