Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

A comparative study on biochemical methane potential of algal substrates: Implications of biomass pre-treatment and product extraction.

Dried powdered algae (SDPA), heat treated algae (MHTA), lipid extracted algae (LEA) and protein extracted algae (PEA) were digested to determine biomethane potential. The average CH4 production rate was ∼2.5-times higher for protein and lipid extracted algae than for whole algae (SDPA and MHTA) whilst the cumulative CH4 production was higher for pre-treated algae. Highest cumulative CH4 production (318.7mlCH4g(-1)VS) was observed for MHTA followed by SDPA (307.4mlCH4g(-1)VS). CH4/CO2 ratios of 1.5 and 0.7 were observed for MHTA and LEA respectively. Pre-treatment processes disrupted the algal cell wall, exposing intracellular material which remained intact as opposed to product extraction processes which broke down the intracellular compounds resulting in changes in elemental composition and decreases the cumulative gas yield and CH4/CO2 ratio. Comparative analysis determined that the most profitable route of biomass utilisation was protein extraction followed by biogas production giving ∼2.5-times higher return on investment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app