Add like
Add dislike
Add to saved papers

Quantification of hydrocarbon species on surfaces by combined microbalance-FTIR.

Absorption coefficients for the asymmetric stretching modes of CH3 and CH2 groups formed by adsorbing alkyl chained species from the vapour phase onto two different adsorbents; a γ-alumina support material and a supported metal catalyst have been determined using a custom made thermogravimetric-infrared cell. Results show that despite variations in the individually calculated absorption coefficients (ca. ±20%), the ratio of the absorption coefficients (CH2 :CH3 ) remained consistent despite employing adsorbates of varying chain length and functionality, and despite the choice of adsorbents which exhibited different surface areas and light scattering characteristics. The use of this absorption coefficient ratio has been shown to be applicable in the quantification of the average chain length of multiple adsorbed species of differing chain length. The potential for applying this to scenarios where reactions on surfaces are monitored is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app