Add like
Add dislike
Add to saved papers

Nicotine Content and Physical Properties of Large Cigars and Cigarillos in the United States.

Introduction: Cigars are combusted tobacco products consisting of filler, binder, and wrapper, which are derived from tobacco. Despite the abundance of literature on the composition of traditional combusted cigarettes, research is limited on the physical and chemical properties of cigars. Therefore, research on cigar properties may be useful to better understand their health impact.

Methods: In this study, twenty large cigar and cigarillo products were characterized for physical properties (ie, weight, length, and diameter), filler nicotine content, and tobacco pH. Tobacco pH was used to calculate free nicotine content, free nicotine concentration, and percent free nicotine for all cigars using the Henderson-Hasselbach equation. An additional analysis was performed on a second batch of two large cigar and two cigarillo brands to determine within-brand consistency. All analyses were performed in triplicate.

Results: The initial analysis of the twenty cigars showed that cigars exhibited wide variation in product size and nicotine content, although tobacco pH was similar across cigars. Furthermore, in the two large cigar and cigarillo brands analyzed a second time, there was considerable within-brand variance in nicotine content and concentration between the first and second analyses.

Conclusions: While only a small sample of commercially-available cigars was analyzed, our data suggest there is wide variability in nicotine content and some physical properties in the domestic cigar market. The data may help to inform potential future regulatory decisions related to these products.

Implications: This study reveals some of the challenges to experimental cigar research and illustrates the need to characterize cigar products (eg, nicotine and tobacco content) before use in clinical studies. Additional studies and characterization of the physical and chemical properties of cigars may be useful to further understand these products' toxicity, abuse potential, and public health impact.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app