Journal Article
Validation Studies
Add like
Add dislike
Add to saved papers

Viable offspring after imaging of Ca2+ oscillations and visualization of the cortical reaction in mouse eggs.

–: During mammalian fertilization, egg Ca 2+ oscillations are known to play pivotal roles in triggering downstream events such as resumption of the cell cycle and the establishment of blocks to polyspermy. However, viable offspring have not been obtained after monitoring Ca 2+ oscillations, and their spatiotemporal links to subsequent events are still to be examined. Therefore, the development of imaging methods to avoid phototoxic damage while labeling these events is required. Here, we examined the usefulness of genetically encoded Ca 2+ indicators for optical imaging (GECOs), in combination with spinning-disk confocal imaging. The Ca 2+ imaging of fertilized mouse eggs with GEM-, G-, or R-GECO recorded successful oscillations (8.19 ± 0.31, 7.56 ± 0.23, or 7.53 ± 0.27 spikes in the first 2 h, respectively), similar to those obtained with chemical indicators. Then, in vitro viability tests revealed that imaging with G- or R-GECO did not interfere with the rate of development to the blastocyst stage (61.8 or 70.0%, respectively, vs 75.0% in control). Furthermore, two-cell transfer to recipient female mice after imaging with G- or R-GECO resulted in a similar birthrate (53.3 or 52.0%, respectively) to that of controls (48.7%). Next, we assessed the quality of the cortical reaction (CR) in artificially activated or fertilized eggs using fluorescently labeled Lens culinaris agglutinin fluorescein isothiocyanate. Multicolor imaging demonstrated that the first few Ca 2+ spikes are sufficient for the completion of the CR and subsequent hardening of the zona pellucida in mouse eggs. These methods provide a framework for studying Ca 2+ dynamics in mammalian fertilization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app