Add like
Add dislike
Add to saved papers

Emerging molecular therapies targeting myocardial infarction-related arrhythmias.

Cardiac disease is the leading cause of death in the developed world. Ventricular arrhythmias associated with myocardial ischaemia and/or infarction are a major contributor to cardiovascular mortality, and require improved prevention and treatment. Drugs, devices, and radiofrequency catheter ablation have made important inroads, but have significant limitations ranging from incomplete success to undesired toxicities and major side effects. These limitations derive from the nature of the intervention. Drugs are frequently ineffective, target the entire heart, and often do not deal with the specific arrhythmia trigger or substrate. Devices can terminate rapid rhythms but at best indirectly affect the underlying disease, while ablation, even when appropriately targeted, induces additional tissue damage. In contrast, exploration of gene and cell therapies are expected to provide a targeted, non-destructive, and potentially regenerative approach to ischaemia- and infarction-related arrhythmias. Although these approaches are in the early stages of development, they carry substantial potential to advance arrhythmia prevention and treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app