Add like
Add dislike
Add to saved papers

Current Noise from a Magnetic Moment in a Helical Edge.

We calculate the two-terminal current noise generated by a magnetic moment coupled to a helical edge of a two-dimensional topological insulator. When the system is symmetric with respect to in-plane spin rotation, the noise is dominated by the Nyquist component even in the presence of a voltage bias V. The corresponding noise spectrum S(V,ω) is determined by a modified fluctuation-dissipation theorem with the differential conductance G(V,ω) in place of the linear one. The differential noise ∂S/∂V, commonly measured in experiments, is strongly dependent on frequency on a small scale τ_{K}^{-1}≪T set by the Korringa relaxation rate of the local moment. This is in stark contrast to the case of conventional mesoscopic conductors where ∂S/∂V is frequency independent and defined by the shot noise. In a helical edge, a violation of the spin-rotation symmetry leads to the shot noise, which becomes important only at a high bias. Uncharacteristically for a fermion system, this noise in the backscattered current is super-Poissonian.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app