Add like
Add dislike
Add to saved papers

ROCK inhibition as a potential therapeutic target involved in apoptosis in hemangioma.

Gene expression was examined in hemangiomas (HA), benign, birthmark-like tumors occurring in infancy, and confirmed in HA-derived endothelial cells (HDEC), for which cell proliferation and apoptosis were also assessed. Protein and mRNA accumulation of Rho-associated protein kinase (ROCK), vascular endothelial growth factor (VEGF), Ki-67 and proliferating cell nuclear antigen was significantly higher in proliferating phase HAs than in involuting phase HAs. In contrast, p53 and caspase-3 exhibited higher levels of accumulation in involuting than proliferating HAs. Cell apoptotic indexes were low in proliferating phase HAs and increased in involuting phase HAs. HDECs were treated with the ROCK inhibitor Y-27632. Y-27632 induced p53 expression and downregulated VEGF expression, significantly inhibited cell proliferation, and induced cell apoptosis in HA cells. The inhibitor effects were confirmed in HAs from HDEC-injected nude mice. These results indicated that ROCK is involved in p53-mediated apoptosis and VEGF expression in HA cells and suggested that such inhibition may be exploited for future HA therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app