Add like
Add dislike
Add to saved papers

miR‑217 inhibits osteogenic differentiation of rat bone marrow‑derived mesenchymal stem cells by binding to Runx2.

The elucidation of the underlying molecular mechanisms regulating the osteogenic differentiation of bone marrow‑derived mesenchymal stem cells (BMSCs) is of great importance in improving the treatment of bone‑associated diseases. MicroRNAs (miRNAs) have been proven to regulate the osteogenic differentiation of BMSCs. The present study investigated the role of miR‑217 in the osteogenic differentiation of rat BMSCs. It was observed that miR‑217 expression levels were downregulated during the process of osteogenic differentiation. Subsequently, a dual‑luciferase reporter gene assay demonstrated that miR‑217 targets a putative binding site in the 3'‑untranslated region of the runt related transcription factor 2 (Runx2) gene, which is a key transcription factor for osteogenesis. It was then demonstrated that overexpression of miR‑217 attenuated the osteogenesis of BMSCs and downregulated the expression of Runx2, whereas inhibition of miR‑217 promoted osteoblastic differentiation and upregulated Runx2 expression. Furthermore, the extracellular signal‑regulated kinase (ERK) and p38 mitogen‑activated protein kinase (p38 MAPK) signaling pathways were investigated during osteogenic induction, and the data indicated that miR‑217 may exert a negative effect on the osteogenic differentiation of BMSCs through alteration of ERK and p38 MAPK phosphorylation. The present study therefore concluded that miR‑217 functions as a negative regulator of BMSC osteogenic differentiation via the inhibition of Runx2 expression, and the underlying molecular mechanisms may partially be attributed to mediation by the ERK and p38 MAPK signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app