Add like
Add dislike
Add to saved papers

Granzyme B enters the mitochondria in a Sam50-, Tim22- and mtHsp70-dependent manner to induce apoptosis.

We have found that granzyme B (GB)-induced apoptosis also requires reactive oxygen species resulting from the alteration of mitochondrial complex I. How GB, which does not possess a mitochondrial targeting sequence, enter this organelle is unknown. We show that GB enters the mitochondria independently of the translocase of the outer mitochondrial membrane complex, but requires instead Sam50, the central subunit of the sorting and assembly machinery that integrates outer membrane β-barrel proteins. Moreover, GB breaches the inner membrane through Tim22, the metabolite carrier translocase pore, in a mitochondrial heat-shock protein 70 (mtHsp70)-dependent manner. Granzyme A (GA) and caspase-3 use a similar route to the mitochondria. Finally, preventing GB from entering the mitochondria either by mutating lysine 243 and arginine 244 or depleting Sam50 renders cells more resistant to GB-mediated reactive oxygen species and cell death. Similarly, Sam50 depletion protects cells from GA-, GM- and caspase-3-mediated cell death. Therefore, cytotoxic molecules enter the mitochondria to induce efficiently cell death through a noncanonical Sam50-, Tim22- and mtHsp70-dependent import pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app