Add like
Add dislike
Add to saved papers

The Potential for a Targeted Strength-Training Program to Decrease Asymmetry and Increase Performance: A Proof of Concept in Sprinting.

The global application of horizontal force (FH ) via hip extension is related to improvements in sprint performance (eg, maximal velocity [vmax ] and power [Pmax ]). Little is known regarding the contribution of individual leg FH and how a difference between the legs (asymmetry) might subsequently affect sprint performance. The authors assessed a single male athlete for pre-post outcomes of a targeted hip-extension training program on FH asymmetry and sprint-performance metrics. An instrumented nonmotorized treadmill was used to obtain individual leg and global sprint kinetics and determine the athlete's strong and weak leg, with regard to the ability to produce FH while sprinting. Following a 6-wk control block of testing, a 6-wk targeted training program was added to the athlete's strength-training regimen, which aimed to strengthen the weak leg and improve hip-extension function during sprinting. Preintervention to postintervention, the athlete increased FH (standardized effect [ES] = 2.2; +26%) in his weak leg, decreased the FH asymmetry (ES = -0.64; -19%), and increased vmax (ES = 0.67; +2%) and Pmax (ES = 3.2; +15%). This case study highlighted a promising link between a targeted training intervention to decrease asymmetry in FH and subsequent improvement of sprint-performance metrics. These findings also strengthen the theoretical relationship between the contribution of individual leg FH and global FH while sprinting, indicating that reducing asymmetry may decrease injury risk and increase practical performance measures. This case study may stimulate further research investigating targeted training interventions in the field of strength and conditioning and injury prevention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app