Add like
Add dislike
Add to saved papers

A Theoretical Study on Methane C-H Bond Activation by Bare [FeO] +/0/ .

The first C-H bond activation of methane by bare diatomic FeO in different charge states (cationic + , neutral 0, and anionic - ) has been studied by means of density functional theory (DFT) and CCSD(T) methods. The structures were optimized by using 10 popular different density functionals (DFs) with different Hartree-Fock exchange fractions, as well as the CCSD method and then were subjected to single point energy calculations at both the DFT level and the CCSD(T) level. The performance of these methods on the energies and structures in different charged states of the systems was discussed. The results show that the cationic system has lower barrier than the neutral and anionic systems. In most cases, the impact of density functionals is larger than that of structures on energies. Among the three charged states, the anionic system is the least sensitive to the density functionals. The electronic structure analysis demonstrates that the cationic and neutral systems proceed by either hydrogen-atom transfer (HAT) or proton-coupled electron transfer (PCET), while the anionic system only employs the proton transfer (PT) mechanism. Knowledge from this study is of value for further studies on methane activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app