Add like
Add dislike
Add to saved papers

in/out Isomerism of cyclophanes: a theoretical account of 2,6,15-trithia-[3 4,10 ][7]metacyclophane and [3 4,10 ][7]metacyclophane as well as their halogen substituted analogues.

A detailed theoretical investigation of cyclophanes with a divergent set of methods ranging from molecular mechanics through semiempirical to ab initio is presented. Cyclophanes have attracted interest over the years due to their unusual chemistry and increasing applications. There has been previous debate over the effects contributing to the greater stability of more-crowded in isomers of certain cyclophanes, and a higher strain in the out isomer was the prevailing explanation. Application of EDA-NOCV and SAPT analysis has enabled us to distinguish between different effects controlling isomer stability and determine the significance of all effects involved. Our results show that, although strain has a large significance, orbital stabilization within the molecule from the aromatic electron density is crucial. Furthermore, we analysed halogen-substituted cyclophanes in order to further understand these subtle effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app