Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of hexose kinase genes in Kluyveromyces marxianus and thermo-tolerant one step producing glucose-free fructose strain construction.

Scientific Reports 2017 March 25
In yeast, the hexose assimilation is started at hexose phosphorylation. However, in Kluyveromyces marxianus, the hexokinase (HXK) and glucokinase (GLK) genes were not identified by experiments. Meanwhile, the glucose-free fructose product requires more cost-efficient method. In this study, the KmHXK1 and KmGLK1 genes were functionally identified through gene disruption, over-expression and recombinant enzymes characterization. Both glucose and fructose assimilation ability decreased significantly in KmHXK1 disrupted strain YLM001, however, this ability was not changed obviously in KmGLK1 disrupted strain YLM002. When over-expressing KmGLK1 in YLM001, only the glucose assimilation ability was recovered in obtained strain (YLM005). The kinetic constant analysis of recombinant enzymes also proved that KmHXK1 could phosphorylate glucose (Vmax 553.01 U/mg, Km 0.83 mM) and fructose (Vmax 609.82 U/mg, Km 0.52 mM), and KmGLK1 only phosphorylate glucose with a Vmax of 0.73 U/mg and a Km 4.09 mM. A thermo-tolerant strain YGR003 which produced glucose-free fructose from Jerusalem artichoke tuber in one step was constructed based on the obtained information. The highest production and fastest productivity were 234.44 g/L and 10.26 g/L/h, respectively, which were several folds of the results in previous reports.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app