CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cavity filling mutations at the thyroxine-binding site dramatically increase transthyretin stability and prevent its aggregation.

Scientific Reports 2017 March 25
More than a hundred different Transthyretin (TTR) mutations are associated with fatal systemic amyloidoses. They destabilize the protein tetrameric structure and promote the extracellular deposition of TTR as pathological amyloid fibrils. So far, only mutations R104H and T119M have been shown to stabilize significantly TTR, acting as disease suppressors. We describe a novel A108V non-pathogenic mutation found in a Portuguese subject. This variant is more stable than wild type TTR both in vitro and in human plasma, a feature that prevents its aggregation. The crystal structure of A108V reveals that this stabilization comes from novel intra and inter subunit contacts involving the thyroxine (T4 ) binding site. Exploiting this observation, we engineered a A108I mutation that fills the T4 binding cavity, as evidenced in the crystal structure. This synthetic protein becomes one of the most stable TTR variants described so far, with potential application in gene and protein replacement therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app