Add like
Add dislike
Add to saved papers

Air-Liquid Interfacial Self-Assembly of Non-Amphiphilic Poly(3-hexylthiophene) Homopolymers.

Here, we demonstrate that the self-assembly of poly(3-hexylthiophene) (P3HT) at the air-water interface can lead to free-standing films of densely packed P3HT nanowires. Interfacial self-assembly on various liquid subphases, such as water, diethylene glycol, and glycerol, indicates that the viscosity of the subphase is an important factor for the formation of well-ordered nanostructures. The thin-film morphology is also sensitive to the concentration of P3HT, its molecular weight (MW), and the presence of oxidative defects. The densely packed nanowire films can be easily transferred to solid substrates for device applications. The ultrathin films of P3HT prepared by the interfacial assembly showed significantly higher hole mobility (∼3.6 × 10-2 cm2 /V s) in a field-effect transistor than comparably thin spin-cast films. This work demonstrates that the air-liquid interfacial assembly is not limited to amphiphilic polymers and can, under optimized conditions, be applied to fabricate ultrathin films of widely used conjugated polymers with controlled morphologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app